
ar
X

iv
:2

11
2.

09
84

9v
1 

 [
m

at
h.

A
C

] 
 1

8 
D

ec
 2

02
1

STRONGLY LECH-INDEPENDENT IDEALS AND LECH’S

CONJECTURE

CHENG MENG

Abstract. We introduce the notion of strongly Lech-independent ideals as a
generalization of Lech-independent ideals defined by Lech and Hanes, and use
this notion to derive inequalities on multiplicities of ideals. In particular we
prove that if (R,m) → (S, n) is a flat local extension of local rings such that S

is the localization of a standard graded ring over a field at the homogeneous
maximal ideal, mS is the localization of a homogeneous ideal and is n-primary,
then e(R) ≤ e(S).

1. introduction

Around 1960, Lech made the following remarkable conjecture on the Hilbert-
Samuel multiplicities in [9]:

Conjecture 1.1. Let (R,m) → (S, n) be a flat local extension of local rings. Then
e(R) ≤ e(S).

As the Hilbert-Samuel multiplicity measures the singularity of a ring, this con-
jecture roughly means that the singularity of R is no worse than that of S if
(R,m) → (S, n) is a flat local extension. This conjecture has now stood for sixty
years and remains open in most cases. It has been proved in the following cases:

(1) dimR ≤ 2 [9];
(2) S/mS is a complete intersection [9];
(3) R is a strict complete intersection [1];
(4) dimR = 3 and R has equal characteristic [12];
(5) R is a standard graded ring over a perfect field (localized at the homoge-

neous maximal ideal) [13].

For other results see [3], [4], [5] and [11]. In this paper the key concept is a new
notion called strongly Lech-independence, which is a natural generalization of Lech-
independence introduced in [10] and explored in [4]. By definition, an ideal I ⊂ S
is strongly Lech-independent if for any i, Ii/Ii+1 is free over S/I, and a set of
elements is strongly Lech-independent if it is a minimal generating set of a strongly
Lech-independent ideal. Under strongly Lech-independence assumption, we can
calculate the colength of powers of ideals using the data on the monomials of a
minimal generating set, thus we can derive inequalities on multiplicities. The main
result on multiplicities of ideals is the following inequality:

Theorem (See Theorem 4.5). Let I be a strongly Lech-independent ideal in a local
ring (S, n). Let x1, ..., xr be a minimal generating set of I such that ord(xi) = ti.
Assume that t1 ≤ t2 ≤ ... ≤ tr. Then e(n) ≤ e(Γ)l(S/I)/t1...td−1td.
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Here e(Γ) is a constant explained in the sections before Theorem 4.5. Note that if
I = mS for some flat local map (R,m) → (S, n), then I is strongly Lech-independent
and e(Γ) = e(R). Also when S is the localization of a standard graded ring over a
field at its homogeneous maximal ideal, we get an inequality of the other direction
which is a particular case of Lech’s conjecture:

Theorem (See Theorem 4.7). Let (R,m) → (S, n) be a flat local extension of
local rings. Suppose S is the localization of a standard graded ring over a field k
at its homogeneous maximal ideal, mS is the localization of a homogeneous ideal
generated by homogeneous elements of degree t1 ≤ t2 ≤ ... ≤ tr and is n-primary.
Then e(S) ≥ e(R)t1t2 . . . tr−d.

The paper is organized in the following way. In Section 2 we start with the
definition of a standard set, along with some basic definitions and properties on
the set of monomials in a polynomial ring. In Section 3 we define strongly Lech-
independence and expansion property and prove some equivalent conditions. There
are also some examples showing the relation between strongly Lech-independence
and other notions. In Section 4 we use strongly Lech-independence to analyze the
colength of powers of ideals and derive inequalities on multiplicities.

2. standard sets in a polynomial ring

Let r be a positive integer, k be a field. Let P = k[T1, ..., Tr] be a polynomial
ring in r variables where Ti’s are indeterminates.

Definition 2.1. An ideal I of P is called a monomial ideal, if I is generated by
monomials. A set of monomials Γ is called a standard set of monomials, or a
standard set for short, if Γ is a subset of monomials in P such that if u is in Γ, then
every monomial dividing u is in Γ.

Let Mon(·) be the set of all the monomials in a polynomial ring or a monomial
ideal. For a standard set Γ, let Γi be the monomials of degree i in Γ. A standard
set is closed under taking factors, hence its complement is closed under taking
multiples, which means that the complement is just the set of all monomials in a
monomial ideal. Hence we have:

Proposition 2.2. Γ is a standard set if and only if for some monomial ideal IΓ,
Mon(P )\Γ = Mon(IΓ). This builds a bijection between the set of standard sets and
the set of monomial ideals in P .

Let us recall the following basic definition of the graded ring P/IΓ, where Γ is a
standard set. The following definitions can be seen in, for example, [2].

Definition 2.3. Let Γ be a standard set. Let z = (z1, ..., zr). For a monomial
u = T a1

1 T a2

2 ...T ar
r ∈ P , let u(z) = za1

1 za2

2 ...zar
r . The multigraded Hilbert series

of P/IΓ is HSP/IΓ(z) =
∑

u∈Γ u(z). This is a power series in variables z1, ..., zr.
The Hilbert series of P/IΓ is HSP/IΓ(z) = HS(z, z, ..., z). The dimension d of
P/IΓ is the order of HSP/IΓ(z) at the pole z = 1; the multiplicity of P/IΓ is just

limz→1 HSP/IΓ(z)(1− z)d.

For convenience sometimes we only care about the standard set Γ, not the mono-
mial ideal IΓ. So we make the following convention.

Definition 2.4. Let Γ be a standard set. We define the Hilbert series, dimension
and multiplicity of Γ to be that of P/IΓ.
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Proposition 2.5. (Stanley decomposition) For each standard set Γ, there exist a
finite set of pairs (ui, Si) where every ui is a monomial in Γ and every Si is a subset
of variables such that P/IΓ = ⊕iuik[Si] as a k-vector space. In this case, Γ is the
disjoint union of ui ·Mon(k[Si]).

We call such a partition of Γ a Stanley decomposition of Γ denoted by (ui, Si).
The proof of the existence can be seen in [15]. In general, there is a Stanley
decomposition for every quotient ring P/I where I is a general ideal and every
ui is an element in P . In [15] we have the following proposition of the Stanley
decomposition.

Proposition 2.6. Let Γ be a standard set with Stanley decomposition (ui, Si).

Then the multigraded Hilbert series of Γ is
∑

i
ui(z)

ΠTj∈Si
(1−zj)

. The dimension d of Γ

is max|Si|. The multiplicity of Γ is the number of i such that |Si| = d.

3. Lech-independence and strongly Lech-independence

Throughout the following two sections we make the following assumptions: we
assume S is a Noetherian local ring with maximal ideal n, and I is an ideal of S.
We also assume P = k[T1, ..., Tr] is a polynomial ring in r variables.

Recall that for an element f ∈ S, the order of f , denoted by ord(f), is the unique
integer t such that f ∈ n

t\nt+1 if f 6= 0 and is∞ if f = 0. First we give the definition
of Lech-independence in [10] and generalize it to strongly Lech-independence:

Definition 3.1. We say that I is Lech-independent if I/I2 is free over S/I. We
say that I is strongly Lech-independent if Ii/Ii+1 is free over S/I for any i. We
say that a sequence of elements x1, ..., xr is Lech-independent (resp. strongly Lech-
independent), if they form a minimal generating set of an ideal which is Lech-
independent (resp. strongly Lech-independent).

Obviously, strongly Lech-independence implies Lech-independence.
In [10] we have the following equivalent conditions.

Proposition 3.2. The following are equivalent for I.
(1) I is Lech-independent.
(2) Let

∑
i aixi = 0 be a relation between the minimal generators xi of I. Then

ai ∈ I for all i.
(3) Let φ be a presentation matrix for a minimal presentation of the ideal I viewed
as an S-module, then φ has entries in I.

We have the following equivalent conditions for strongly Lech-independence.

Proposition 3.3. The following are equivalent for I.
(1) I is strongly Lech-independent.
(2) grI(S) is free over S/I.
(3) grI(S) is flat over S/I.

Proof. It suffices to prove (3) ⇒ (1). If grI(S) is flat over S/I, then for any i,
Ii/Ii+1 is flat over S/I because it is a direct summand of grI(S). But it is finitely
generated over the local ring S/I, so it is free. So I is strongly Lech-independent
by definition. �

We introduce one kind of expansion property for elements in the ring S. For a se-
quence x1, ..., xr of r elements in S and u = T a1

1 T a2

2 ...T ar
r , let u(x) = xa1

1 xa2

2 ...xar
r ∈

S. For a monomial ideal J ⊂ P , let J(x) = (u(x), u ∈ Mon(J)). It is an ideal in S.
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Definition 3.4. We say a map σ : S/I → S is a lifting which preserves 0, or a
lifting for short, if σ(0) = 0 and the composition of σ with the natural quotient
map π : S → S/I is the identity map.

Roughly speaking, σ picks a representative for each coset in S/I. We always
choose 0 as a representative for simplicity.

Definition 3.5. Let i < j be two positive integers, x1, ..., xr be a sequence of r
elements in S, I be the ideal (x1, ..., xr), Γ a subset of Mon(P ). We say x1, ..., xr

is Γ-expandable from degree i to j, if for any lifting σ : S/I → S, every element
f ∈ Ii has a unique representation

f =
∑

u∈Γk,i≤k≤j−1

fuu(x) modulo Ij ,

such that for any u, fu ∈ σ(S/I). If S is complete, we say that x1, ..., xr is Γ-
expandable from degree i to ∞, if for any lifting σ : S/I → S and every element
f ∈ Ii there is a unique representation

f =
∑

u∈Γk,i≤k

fuu(x)

such that for any u, fu ∈ σ(S/I). We say that x1, ..., xr is Γ-expandable if it is ex-
pandable from degree 0 to infinity. The two expressions f =

∑
u∈Γk,i≤k≤j−1 fuu(x)

modulo Ij and f =
∑

u∈Γk,i≤k fuu(x) are called the expansion of f with respect to
Γ and the lifting σ, or simply the expansion of f if Γ and σ are clear. We say an
ideal is Γ-expandable from degree i to j or ∞ if one minimal generating sequence
of the ideal is Γ-expandable from degree i to j or ∞.

From the definition we see that the expansion property depends on the choice of
the minimal generators and the order. When we say “an ideal I is Γ-expandable”
without pointing out a minimal generating sequence of I which is Γ-expandable,
we implicitly choose such a sequence and in this case the notation u(x), u ∈ Γ will
make sense. Also when we say x1, ..., xr is Γ-expandable for Γ ⊂ Mon(P ), we
always assume that the length of the sequence r is equal to the number of variables
in P .

For the consistency of the notation, we denote I∞ = 0. Note that we always
assume S is complete when we talk about “Γ-expandable from degree i to ∞”.

Remark 3.6. Suppose x1, ..., xr is Γ-expandable from degree i to j, I = (x1, ..., xr),
and take f, g ∈ Ii such that f−g ∈ Ij . Then let f =

∑
u∈Γk,i≤k≤j−1 fuu(x) modulo

Ij be the unique expansion, we have g =
∑

u∈Γk,i≤k≤j−1 fuu(x) modulo Ij , so the
unique expansion of f and g are the same, that is, it only depends on the coset
f + Ij .

Now we want to relate strongly Lech-independence to some expansion property.
We start with two lemmas:

Lemma 3.7. Let i1, i2 be positive integers, i3 is either a positive integer or the
infinity such that i1 < i2 < i3. Consider 3 conditions on a sequence x1, ..., xr.
(1)x1, ..., xr is Γ-expandable from degree i1 to i2
(2)x1, ..., xr is Γ-expandable from degree i1 to i3
(3)x1, ..., xr is Γ-expandable from degree i2 to i3

Then two of them imply the third one.
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Proof. Let I = (x1, ..., xr). Obviously u ∈ Γk implies u(x) ∈ Ik.
Assume (1) and (2) are true, then for any f ∈ Ii2 ⊂ Ii1 , by (2) we have

f =
∑

u∈Γk,i1≤k≤i3−1

fuu(x) modulo Ii3 .

Let
f ′ =

∑

u∈Γk,i1≤k≤i2−1

fuu(x),

then f ′ = f = 0 modulo Ii2 . By (1) the unique expansion of f ′ modulo Ii2 exists
and it must be 0. So fu = 0 for all u ∈ Γk, i1 ≤ k ≤ i2 − 1 and hence we have

f =
∑

u∈Γk,i2≤k≤i3−1

fuu(x).

This shows the existence. The uniqueness just follows from (2) because an expansion
from degree i2 to i3 can be viewed as an expansion from degree i1 to i3 by adding
0’s.

Assume (1) and (3) are true. Let f ∈ Ii1 , then by (1)

f =
∑

u∈Γk,i1≤k≤i2−1

fuu(x) + g,

where g ∈ Ii2 . By (3),

g =
∑

u∈Γk,i2≤k≤i3−1

guu(x) + h,

where h ∈ Ii3 . Thus

f =
∑

u∈Γk,i1≤k≤i2−1

fuu(x) +
∑

u∈Γk,i2≤k≤i3−1

guu(x) + h

is a representation of f . This shows the existence. For uniqueness, let
∑

u∈Γk,i1≤k≤i2−1

f ′
uu(x) +

∑

u∈Γk,i2≤k≤i3−1

g′uu(x)

be another representation of f modulo Ii3 . Then

f =
∑

u∈Γk,i1≤k≤i2−1

fuu(x) +
∑

u∈Γk,i2≤k≤i3−1

guu(x)

=
∑

u∈Γk,i1≤k≤i2−1

f ′
uu(x) +

∑

u∈Γk,i2≤k≤i3−1

g′uu(x) modulo Ii3 .

So

f =
∑

u∈Γk,i1≤k≤i2−1

fuu(x) =
∑

u∈Γk,i1≤k≤i2−1

f ′
uu(x) modulo Ii2 .

So by (1), fu = f ′
u for any u. Cancelling these terms, we get
∑

u∈Γk,i2≤k≤i3−1

guu(x) =
∑

u∈Γk,i2≤k≤i3−1

g′uu(x) modulo Ii3 .

By (3) gu = g′u, which proves the uniqueness.
Assume (2) and (3) are true. Then for any f ∈ Ii1 , by (2)

f =
∑

u∈Γk,i1≤k≤i3−1

fuu(x) modulo Ii3 .
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Then

f =
∑

u∈Γk,i1≤k≤i2−1

fuu(x) modulo Ii2 ,

so the representation exists. Now suppose there is another expression

f =
∑

u∈Γk,i1≤k≤i2−1

f ′
uu(x) + g, g ∈ Ii2 .

Then by (3)

g =
∑

u∈Γk,i2≤k≤i3−1

guu(x) modulo Ii3 .

So

f =
∑

u∈Γk,i1≤k≤i2−1

f ′
uu(x) +

∑

u∈Γk,i2≤k≤i3−1

guu(x) modulo Ii3 ,

so f ′
u = fu for any u ∈ Γk, i1 ≤ k ≤ i2−1 by the uniqueness of (2), so the uniqueness

of (1) is proved. �

Lemma 3.8. Let i be an integer. Let i′1 < i′2 < ... be a sequence of integers going
to infinity and assume that i < i′1. Suppose x1, ..., xr is Γ-expandable from degree i
to i′j for any j. Then x1, ..., xr is Γ-expandable from degree i to infinity.

Proof. Let I = (x1, ..., xr) and take f ∈ Ii. Let

f =
∑

u∈Γk,i≤k≤i′
j

fj,uu(x) + gj, gj ∈ Ii
′
j .

Suppose j < j′. Then
∑

u∈Γk,i≤k≤i′
j

fj,uu(x) + gj =
∑

u∈Γk,i≤k≤i′
j′

fj′,uu(x) + gj′ ,

so ∑

u∈Γk,i≤k≤i′j

fj,uu(x) =
∑

u∈Γk,i≤k≤i′j

fj′,uu(x) modulo Ii
′
j .

By the uniqueness of the representation, fj,u = fj′,u for any j, j′, u. So for any
u, fj,u is independent of the choice of j so we can denote it by fu. The ex-
pression

∑
u∈Γk,i≤k<∞ fuu(x) makes sense because the ring is complete. We have

f −∑
u∈Γk,i≤k<∞ fuu(x) ∈ Ii

′
j for any j, so it is 0. So

f =
∑

u∈Γk,i≤k<∞

fuu(x)

is a representation. The uniqueness can be proved modulo Ii
′
j for any j. �

By the previous two lemmas we are able to describe the relation between strongly
Lech-independence and the expansion property.

Proposition 3.9. The following are equivalent.
(1) I is strongly Lech-independent.
(2) For every minimal generating sequence x1, ..., xr of I there is a standard subset
Γ of Mon(P ) such that Ii/Ii+1 is free over S/I with basis u(x), with u ∈ Γi.
(3) For every minimal generating sequence x1, ..., xr of I there is a standard subset
Γ of Mon(P ) such that for any i, x1, ..., xr is Γ-expandable from degree i to i+ 1.
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(4) For every minimal generating sequence x1, ..., xr of I there is a standard subset
Γ of Mon(P ) such that for any i < j, x1, ..., xr is Γ-expandable from degree i to j.
(5) For every minimal generating sequence x1, ..., xr of I there is a standard subset
Γ of Mon(P ) such that for any i, x1, ..., xr is Γ-expandable from degree i to infinity.

Proof. (1) implies (2): Let I = (x1, ..., xr). Since Ii/Ii+1 is free, the preimage of a
k-basis of Ii/Ii+1 ⊗S S/n forms an S/I-basis of Ii/Ii+1. Consider the special fibre
ring FI(S) = grI(S)⊗S S/n, then it’s standard graded over the field S/n. We may
write FI(S) = k[T1, ..., Tr]/J for some homogeneous ideal J such that the image
of xi is Ti + J for 1 ≤ i ≤ r. Let Γ = Mon(k[T1, ..., Tr])\Mon(in(J)), where the
initial is taken with respect to any term order which is a refinement of the partial
order given by the total degree. Then by the basic propositions of the initial ideal
in [1], the monomials in Γi is a k-basis of Ii/Ii+1 ⊗S S/n. So taking the preimage,
we know that u(x), u ∈ Γi is an S/I-basis of Ii/Ii+1.

(2) implies (1): trivial.
(2) implies (3): Suppose (2) is true. Let f ∈ Ii. Since Ii/Ii+1 is generated by

u(x), u ∈ Γi, f + Ii+1 =
∑

u∈Γi
fuu(x) + Ii+1. So f =

∑
u∈Γi

fuu(x) + g, g ∈ Ii+1.

If there is another representation
∑

u∈Γi
f ′
uu(x) + g′, g ∈ Ii+1, then in Ii/Ii+1 we

have that
∑

u∈Γi
f ′
uu(x) =

∑
u∈Γi

f ′
uu(x). But u(x), u ∈ Γi is an S/I-basis, so

fu = f ′
u modulo I. But fu, f

′
u ∈ σ(S/I). So fu = σ(fu + I) = σ(f ′

u + I) = f ′
u. This

proves (3).
(3) implies (2): Suppose (3) is true. By the existence and the uniqueness of the

representation of every element in Ii modulo Ii+1, we know that Ii/Ii+1 is free
over S/I with basis u(x), with u ∈ Γi.

(3) implies (4): use Lemma 3.7 and apply an induction on |j − i|.
(4) implies (3): trivial.
(4) implies (5): use Lemma 3.8.
(5) implies (4): use Lemma 3.7 for i3 = ∞. �

Remark 3.10. Let I be a strongly Lech-independent ideal. By Proposition 3.9 I
is Γ-expandable for some Γ. So it makes sense to talk about the expansion with
respect to such Γ and a lifting σ.

Note that Γ here for which I is expandable is not unique. However, the number
of monomials in Γi is unique, which is the rank of Ii/Ii+1 over S/I. This means
that dim(Γ) and e(Γ) is independent of the choice of Γ. More precisely, we have:

Proposition 3.11. Let I be a strongly Lech-independent ideal of a local ring (S, n).
Then dim(Γ) and e(Γ) are independent of the choice of Γ whenever I is Γ-expandable
from degree i to ∞ for any i. If moreover S/I is Artinian, then dim(Γ) = dimS
and e(I) = l(S/I)e(Γ). In particular, if I is the maximal ideal n, then e(Γ) = e(S).

Proof. We know that

HSP/IΓ(z) =
∑

i≥0

|Γi|zi.

Since |Γi| is independent of the choice of Γ, so is HSP/IΓ(z); and dim(Γ) and
e(Γ) only depends on HSP/IΓ(z), so they are also independent of the choice of Γ.
Now assume S/I is Artinian, we have dimS = dim grI(S) and grI(S) is flat over
S/I = grI(S)0, so

dim grI(S) = dimS/I + dim grI(S)⊗S/I S/n = dimFI(S).



8 CHENG MENG

The i-th component of FI(S) is I
i/Ii+1 ⊗S/I S/n, and

rankS/n(I
i/Ii+1 ⊗S/I S/n) = rankS/II

i/Ii+1 = |Γi|
because Ii/Ii+1 is free over S/I. This meansHSP/IΓ(z) = HSFI(S)(z) so dimP/IΓ =
dimFI(S) = dimS. Finally,

e(I) = lim
i→∞

(d− 1)!l(Ii/Ii+1)/id−1

and

e(P/IΓ) = lim
i→∞

(d− 1)!|Γi|/id−1.

But l(Ii/Ii+1) = |Γi|l(S/I). So e(I) = l(S/I)e(Γ). The last statement is obvious
by taking I = n. �

Proposition 3.12. Let I be an ideal in S such that I is Γ-expandable for some Γ.
Then T1, ..., Tr ∈ Γ.

Proof. Let x1, ..., xr be a sequence of minimal generators of I which is Γ-expandable,
then they also form a set of minimal generators of I/I2. Suppose Ti /∈ Γ. Since
Γ is a standard set, it only contains monomials not involving Ti, so expanding xi

uniquely we get y + z where y ∈ σ(S/I) and z ∈ (x1, ..., xi−1, xi+1, ..., xr). Since
y = xi − z ∈ I, y = 0. So xi ∈ (x1, ..., xi−1, xi+1, ..., xr) which is a contradiction
because xi is a minimal generator. �

The following proposition on Lech-independence are taken from [10] by Lech.

Proposition 3.13. Let x1, x2, ..., xr be Lech-independent in S and I = (x1, x2, ..., xr).
Suppose x1 = yy′. Then:
(1) y, x2, ..., xr is Lech-independent.
(2) I : y = (y′, x2, ..., xr).

(3) There is an exact sequence 0 → S/(y′, x2, ..., xr)
y−→ S/I → S/(y, x2, ..., xr) → 0.

(4) If I is primary to n, then l(S/I) = l(S/(y, x2, ..., xr)) + l(S/(y′, x2, ..., xr)).

Corollary 3.14. Let x1, x2, ..., xr be elements of S and a1, ..., ar be positive inte-
gers. Suppose xa1

1 , xa2

2 , ..., xar
r is Lech-independent. Then so is x1, ..., xr.

There is an analogue of Corollary 3.14 for the expansion property.

Definition 3.15. Let Γ be a standard set. Let a = (a1, ..., ar) be a set of positive

integers. Let Γ′ be the following set of monomials {u(xa1

1 , ..., xar
r )xb1

1 xb2
2 ...xbr

r |u ∈
Γ, 0 ≤ bi ≤ ai}. Then Γ′ is a standard set. We denote Γ′ = aΓ.

Remark 3.16. This multiplication on the set of standard sets can be derived from
an action on the monomial ideals. Actually, let φa be an automorphism of P
which sends xi to xai

i , then φa maps a monomial to a monomial, hence it extends
a monomial ideal to a monomial ideal. Now the multiplication satisfies IaΓ =
φa(IΓ)P . Since the set of actions φa, a ∈ Nr is a commutative and associative
monoid, the action of Nr on the set of standard sets is commutative and associative.

Use the notation above, we have the following proposition:

Proposition 3.17. Let x1, x2, ..., xr be elements of S and a1, ..., ar be positive
integers. Suppose xa1

1 , xa2

2 , ..., xar
r is Γ-expandable and Lech-independent. Let a =

(a1, ..., ar), then x1, ..., xr is aΓ-expandable.
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Proof. Let I = (xa1

1 , xa2

2 , ..., xar
r ) and J = (x1, x2, ..., xr). For any lifting σ : S/J →

S, we associate a lifting σ′ : S/I → S: by Lemma 3.18 below every element f ∈ S
has a unique expression f =

∑
u∈Mon(P )\Mon((T

a1

1
,...,Tar

r )) fuu(x) modulo I such

that fu ∈ σ(S/J) for any u. Let σ′(f) =
∑

u∈Mon(P )\Mon((T
a1

1
,...,Tar

r )) fuu(x). The

image of σ′ only depends on the coset f + I and it is a lifting σ′ : S/I → S. Now
xa1

1 , xa2

2 , ..., xar
r is Γ-expandable, so every element f ∈ S can be expand uniquely as

∑

v∈Γ

gvv(x
a1

1 , xa2

2 , ..., xar
r ) =

∑

v∈Γ,u∈Mon(P )\Mon((T
a1

1
,...,Tar

r ))

gu,vu(x)v(x
a1

1 , xa2

2 , ..., xar
r )

where gv ∈ σ′(S/I), gu,v ∈ σ(S/J). As u ranges over Mon(P )\Mon((T a1

1 , ..., T ar
r ))

and v ranges over Γ, u(x)v(xa1

1 , xa2

2 , ..., xar
r ) ranges over u(x), u ∈ aΓ, so we are

done. �

Lemma 3.18. Let x1, x2, ..., xr be elements of S and a1, ..., ar be positive in-
tegers. Suppose xa1

1 , xa2

2 , ..., xar
r is Lech-independent. Let P = k[T1, T2, ..., Tr],

J = (T a1

1 , ..., T ar
r ), l = l(S/J) = a1a2...ar, I ′ = (x1, x2, ..., xr), I = J(x) =

(xa1

1 , xa2

2 , ..., xar
r ), . The following holds:

(1)Every prime filtration of S/J is given by J = Jl ⊂ Jl−1 ⊂ ... ⊂ J0 = S such that
Ji/Ji+1

∼= k for any i.
(2)There exist one prime filtration F given by Ji of S/J such that every Ji is
monomial and Ji(x)/Ji+1(x) ∼= S/I ′.
(3)Fix one prime filtration F given by monomial ideals Ji, then there is a one-to-
one correspondence between Ji, 0 ≤ i ≤ l− 1 and Mon(P )\Mon(J) which maps Ji
to the monomial generator of Ji/Ji+1. Denote this map by MF : {0, 1, 2, ..., l−1} →
Mon(P ).
(4)For any lifting σ : S/I ′ → S and f ∈ S there is a unique expansion modulo I,
that is, an equation of the form

f =
∑

u∈Mon(P )\Mon(J)

fuu(x) modulo I

such that fu ∈ σ(S/I).
(5)For any prime filtration G of J given by monomial ideals Ji, Ji(x)/Ji+1(x) ∼=
S/I ′.

Proof. (1):The prime filtration always exists for ideals in a Noetherian ring. Since J
is (T1, ..., Tr)-primary and (T1, ..., Tr) is maximal, every factor is P/(T1, ..., Tr) ∼= k.
The length is l by the definition of length.

(2)Applying Proposition 3.13 inductively we know the following proposition:
Let x1, x2, ..., xr−1, x

ar
r be Lech-independent, then there exists a filtration of the

quotient ring S/(x1, x2, ..., xr−1, x
ar
r ) given by ideals ((x1, x2, ..., xr−1, x

i
r)), 0 ≤ i ≤

r and ((x1, x2, ..., xr−1, x
i
r))/((x1, x2, ..., xr−1, x

i+1
r )) ∼= S/((x1, x2, ..., xr−1, xr)). So

if xa1

1 , xa2

2 , ..., xar
r is Lech-independent, we can first get a filtration by changing the

power of xr; then we refine this filtration by changing the power of xr−1; and refine
it by changing the power of xr−2,...,x1. Finally we get a filtration such that all
the factors are isomorphic, so every factor is isomorphic to the first factor which
is S/(x1, x2, ..., xr). Let < be the pure lexicographic order on P with 1 < T1 <
T2 < ... < Tr, then this filtration is just of the form Ji(x) where Ji is a monomial
generated by Mon(P ) except for the largest i monomials not in J . In particular Ji
is a prime filtration.
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(3)The quotient can be generated by monomials; it is unique because the quotient
is k. For every monomial u ∈ Mon(P )\Mon(J), there is a largest i such that u ∈ Ji,
u /∈ Ji+1. So u 6= 0 in Ji/Ji+1, and since Ji/Ji+1

∼= k, u is a generator of Ji/Ji+1.
(4)For any f ∈ S we find fu inductively; suppose we have already found fu for

u = MF(0),MF(1), ...,MF(i − 1) for 0 ≤ i ≤ l such that

f −
∑

0≤j≤i−1

fMF (j)MF(j)(x) ∈ Ji.

This is trivial for i = 0 because in this case f ∈ J0 = S. Now

f −
∑

0≤j≤i−1

fMF (j)MF(j)(x) ∈ g ·MF(i)(x) + Ji+1

for some g ∈ S. Find the image of g ·MF(i)(x) in Ji/Ji+1
∼= S/I ′ ·MF (i)(x); thus

(g−σ(g+I ′))MF (i)(x) = f−
∑

0≤j≤i−1

fMF (j)MF(j)(x)−σ(g+I ′)MF(i)(x) ∈ Ji+1.

So we find fu for u = MF(0),MF(1), ...,MF(i) by choosing fMF (i) = σ(g). So by
induction we find fu for u = MF(0),MF(1), ...,MF(l − 1) such that

f −
∑

0≤j≤l−1

fuu(x) ∈ Jl = J.

We claim that an expression of this kind is unique; otherwise we get
∑

0≤j≤l−1

fMF (j)MF(j)(x) =
∑

0≤j≤l−1

gMF (j)MF(j)(x) modulo J

and fMF (j), gMF (j) are not all equal. Find smallest i such that fu 6= gu for u =
MF(i). Delete the first i terms we may assume fu = 0 for u = MF(j), j <
i. Then take the image in Ji/Ji+1

∼= S/I ′MF(i)(x) we get fMF (i)MF(i)(x) =
gMF (i)MF (i)(x). So fMF (i) = gMF (i) modulo I ′. But fMF (i), gMF (i) are both
liftings by σ of the same coset, so they are equal, which leads to a contradiction.
Thus the expansion for every element modulo J is unique.

(5)A generating set of Ji can be given by a generating set of Jj/Jj+1, i ≤ j ≤ l−1
and a generating set of J = Jl. We know each Ji/Ji+1 is a quotient of S/I

′ generated
by MG(i)(x). If this quotient is not faithful, then we get a relation aMG(i)(x) = 0
in Ji/Ji+1. Lift a 6= 0 to b = σ(a), then we get bMG(i)(x) ∈ Ji+1, so there exist
gu ∈ σ(S/I ′), u = MG(j), i + 1 ≤ j ≤ l − 1 such that

bMG(i)(x) +
∑

i≤j≤l−1

gMG(j)MG(j)(x) ∈ J.

But we have another expansion which is 0 ∈ J and b 6= 0 because a 6= 0, so we get
two distinct expansion of 0 modulo J , which leads to a contradiction. �

Here are two typical examples of strongly Lech-independent ideals.

Example 3.19. Suppose I is generated by a regular sequence, or I is the maximal
ideal n, then I is strongly Lech-independent.

Strongly Lech-independence implies Lech-independence, but not conversely by
the following example.
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Example 3.20. Let S0 be an Artinian local ring which is not a field and let n0

be the maximal ideal of S0. Let S = S0[[x]]/n0x
2 and I = (x). Then I is Lech-

independent, but not strongly Lech-independent.

Proof. We have grI(S) = S0[x]/n0x
2, S/I = S0, I/I

2 = S0x is free over S0, but
I2/I3 = (S0/n0)x

2 is not free over S0. �

There are also some other strongly Lech-independent ideals given by the following
proposition:

Proposition 3.21. Suppose (R,m) → (S, n) is a flat local map, and J is a strongly
Lech-independent ideal in R. Pick any Γ such that J is Γ-expandable from degree
i to ∞ for any i. Such Γ exists by Proposition 3.10. Then I = JS is strongly
Lech-independent in S, and I is Γ-expandable from degree i to ∞ for any i. In
particular if J = m, then I = mS is strongly Lech-independent. Moreover for any
Γ such that mS is Γ-expandable from degree i to ∞ for any i, we have e(Γ) = e(R).

Proof. If (R,m) → (S, n) is flat local map, then there is an isomorphism Ii/Ii+1 ∼=
J i/J i+1 ⊗R S. Note that freeness and a basis of a module is preserved under any
base change. Let x1, x2, ..., xr be a minimal generating set of J , and yi be the image
of xi, then y1, y2, ..., yr is a minimal generating set of I because the map is local. So
if J is Γ-expandable from degree i to ∞ for any i, or equivalently J is Γ-expandable
from degree i to i + 1 for any i, then u(x), u ∈ Γi is a basis of J i/J i+1 over R/J .
This means u(y), u ∈ Γi is a basis of Ii/Ii+1. Hence I is Γ-expandable from degree
i to i + 1 for any i, so I is Γ-expandable from degree i to ∞ for any i. If J = m,
We pick a Γ′ such that J is Γ′-expandable from degree i to ∞ for any i, then I
is also Γ′-expandable from degree i to ∞ for any i. Then e(Γ) = e(Γ′) = e(R) by
Proposition 3.11. �

Example 3.22. Let S be a local ring, x1, ..., xr be strongly Lech-independent
elements in S. Let S′ = S[T ]/(T k − x1). Then S′ is flat over S, hence x1, ..., xr is
still strongly Lech-independent in S′. We will show later that T, x2, ..., xr may not
be strongly Lech-independent in Example 3.27.

We provide an important source of strongly independent ideals, that is, find a
flat local map and extend the maximal ideals of the source ring to the target. We
have to be careful that these do not provide all the strongly independent ideals.

Example 3.23. Let k be a field, S be the ring k[[t, x, y]]/(t2, x2−ty2) and consider
the ideal I = (x, y). Then I is strongly independent in S. Let R be the subring
generated over k by x, y. Then R = k[[x, y]]/(x4) and S is not flat over R.

Proof. We have grI(S) = k[t, x, y]/(t2, x2−ty2) as a standard graded ring with deg t
= 0, deg x = deg y = 1. Let S0 = grI(S)0 = k[t]/t2. Now grI(S)1 = S0x + S0y is
free over S0. For i ≥ 2,

grI(S)i =
∑

0≤j≤i

S0x
jyi−j/

∑

2≤j≤i

S0(x
jyi−j − txj−2yi−j+2).

Note that the set {xjyi−j − txj−2yi−j+2} is part of a minimal basis of the free
module

∑
0≤j≤i S0x

jyi−j , so the quotient is still a free S0-module, which implies

that I is strongly Lech-independent. Let φ : k[[x, y]] → S. Then R = k[[x, y]]/ kerφ
and kerφ = (t2, x2 − ty2) ∩ k[[x, y]]. Let < be the pure lexicographic order such
that 1 > t > x > y. Then for a power series f ∈ k[[t, x, y]], f ∈ k[[x, y]] if and
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only if the largest term of f is in k[[x, y]]. We apply the Buchberger’s algorithm to
compute the ideal of largest terms. The Gröbner basis of the ideal (t2, x2 − ty2) is
t2, x2 − ty2, x4, so (t2, x2 − ty2)∩ k[[x, y]] = (x4). So R = k[[x, y]]/(x4). Now S has
a minimal generating set 1, t as an R-module and a nontrivial relation x2− ty2 = 0,
so S is not free over R. �

If we allow a change in the residue field we have another example. The proof is
similar to Example 3.23.

Example 3.24. Let S = C[[x1, x2]]/(x
2
1 +

√
−1x2

2) and R = R[[x1, x2]]/(x
4
1 + x4

2).
Then R is a subring of S, mS = (x1, x2)S is strongly independent, and S is not flat
over R.

Corollary 3.14 is a strong proposition for Lech-independence. It allows us to
replace Lech-independent elements with their roots. However, its converse does not
hold, so in general we cannot replace elements with their powers while preserving
independence property. In fact, the condition ”stays Lech-independent after raising
to any power” is a strong condition which is equivalent to being a regular sequence.
To be precise, we have the following equivalent conditions:

Proposition 3.25. Let I be an ideal of a complete local ring S which contains
a field k, and x1, ..., xr be a set of minimal generators. Then the following are
equivalent.
(1) For any positive integer a1, ..., ar, x

a1

1 , xa2

2 , ..., xar
r is Lech-independent.

(2) For any positive integer a1, ..., ar, x
a1

1 , xa2

2 , ..., xar
r is strongly Lech-independent.

(3) x1, ..., xr is Mon(P )-expandable.
(4) x1, ..., xr forms a regular sequence.

Proof. (2) implies (1) is trivial.
(1) implies (3): Let a = min{ai}. We claim that Ii/Ii+1 is free with rank

equal to dimk Pi for i < a. Let I = (xa1

1 , xa2

2 , ..., xar
r ), I1 = (x1, ..., xr), J =

(T a1

1 , T a2

2 , ..., T ar
r ), J1 = (T1, ..., Tr). Consider a filtration Ji = J + J i

1, and Ii =
Ji(x) for 0 ≤ i ≤ ∑

i ai. P/J has length l = a1a2...ar. Thus
∑

i l(Ji/Ji+1) = l.
We can refine the filtration F = Ji by G = Kj such that every Kj is a monomial
ideal and Kj/Kj+1

∼= k for every j. By Lemma 3.18, Kj(x)/Kj+1(x) ∼= S/I. So
Ji(x)/Ji+1(x) has a filtration such that each factor is of the form Kj(x)/Kj+1(x)
which is free, thus Ji(x)/Ji+1(x) is free. The number of factors is just the length of
Ji/Ji+1, so it is free of rank l(Ji/Ji+1). The set {u(x), u ∈ Ji\Ji+1} is a generator
of Ji/Ji+1 and by comparing the cardinality this set is minimal, so it is a free basis.
In particular if i < a = min{ai}, then Ji = J i

1, Ii = Ji(x) = Ii, Ji+1 = J i+1
1 ,

Ii+1 = Ji+1(x) = Ii+1 and l(Ji/Ji+1) = dimk Pi. So Ii/Ii+1 is free with rank equal
to dimkPi. As we let a → ∞, we know that this is true for all i; thus I is strongly
Lech-independent which is Mon(P )-expandable.

(3) implies (4): take an element f̄ ∈ S/(x1, ..., xj) for some j. Let f be a
preimage in S. Suppose xj+1f ∈ (x1, ..., xj). We expand f =

∑
fuu(x). Then

xj+1f =
∑

fu · (uTj+1)(x). This expansion satisfies fu ∈ σ(S/(x1, ..., xr)), so it
must be the unique expansion. We claim that for any g ∈ (x1, ..., xj) with an
expansion

∑
guu(x), gu 6= 0 only if u ∈ (T1, ..., Tj). We may choose the map σ

such that it is k-linear, so in particular, additive; let g =
∑

1≤i≤j gixi. Consider
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the expansion of gi which is
∑

u∈Mon(P ) gi,uu(x); then

g =
∑

1≤i≤j,u∈Mon(P )

gi,u(uTi)(x) =
∑

1≤i≤j,u/Ti∈Mon(P )

gi,u/Ti
u(x).

But fixing u, ∑

1≤i≤j,u/Ti∈Mon(P )

gi,u/Ti
∈ σ(S/(x1, ..., xr))

because σ is k-linear, so
∑

1≤i≤j,u/Ti∈Mon(P ) gi,u/Ti
u(x) is an expansion of g, so it

must be the unique expansion, and in this expansion
∑

1≤i≤j,u/Ti∈Mon(P ) gi,u/Ti
6= 0

only if u ∈ (T1, ..., Tj). Now apply the claim to xj+1f , we see that fu 6= 0 implies
uTj+1 ∈ (T1, ..., Tj), so u ∈ (T1, ..., Tj) and in this case u(x) ∈ (x1, ..., xj), so
f ∈ (x1, ..., xj). Since this is true for any j, we get (4).

(4) implies (2): if x1, ..., xr forms a regular sequence, then gr(x1,...,xr)S
∼=

S/(x1, ..., xr)[T1, ..., Tr], so we get (2). �

Remark 3.26. The proof of Kunz’s theorem in [8] uses the equivalence of (1) and
(4) in the previous proposition. To be precise, suppose R is a local ring of positive
characteristic p such that the Frobenius action on R is flat. let x1, ..., xr be a
minimal generating set of the maximal ideal of R. Then it is Lech-independent.
So after a flat base change F e it is still strongly Lech-independent. But after a

flat base change the ideal just becomes xpe

1 , xpe

2 , ..., xpe

r . As e goes to infinity we
know that any power of x1, ..., xr is Lech-independent. So x1, ..., xr forms a regular
sequence, hence the ring is regular. The above proof can also be seen in standard
textbooks or lecture notes, for instance, [14].

Let x1, x2, ..., xr be elements of S and a1, ..., ar be positive integers. Let I =
(xa1

1 , xa2

2 , ..., xar
r ), I ′ = (x1, x2, ..., xr). In the above paragraph we know I is strongly

Lech-independent implies that I ′ is Γ-expandable for some Γ. Also I is Lech-
independent implies that I ′ is Lech-independent. So it is natural to ask whether I
is strongly Lech-independent implies that I ′ is strongly Lech-independent, and by
Proposition 3.17 it suffices to prove the following: I ′ is Γ-expandable implies I ′ is
Γ-expandable from degree i to infinity for any i. However, both implications are
wrong. This is the reason to introduce the complicated notion ”Γ-expandable from
degree i to j” to describe strongly Lech-independence.

Example 3.27. Let S = k[[x, y, t]]/(t2, ty2 − x8) and I = (x, y), I ′ = (x4, y). Let
P = k[T1, T2],Γ = Mon(P )\Mon((T 8

1 )). Then I ′ is strongly Lech-independent; I
is Γ-expandable, but it is not strongly Lech-independent. In particular for some i
I is not Γ-expandable from degree i to infinity.

Proof. For the first part, let S′ = k[[X, y, t]]/(t2, ty2 −X2) and J = (X, y). Then
by Example 3.23 J is strongly Lech-independent. There is a map S′ → S : X →
x4, y → y, t → t and it is flat local. So I ′ = JS is strongly Lech-independent. For
the rest part, we may choose a local monomial order < on S such that the initial
ideal of K = (t2, ty2 − x8) is (t2, x8). Here the initial of an element is the smallest
term in that element and the initial ideal is the ideal generated by smallest terms of
elements in an ideal. For example, choose < to be the pure lexicographic order on
x, y, t such that x < y < t < 1. Then the initial of the two generator is t2 and x8,
and they are relatively prime, so they form a Gröbner basis of K. So every element
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f in S = k[[x, y, t]]/I can be expressed uniquely as a (possibly infinite) sum

f =
∑

i=0,1,0≤j≤7,k

fi,j,kt
ixjyk =

∑

0≤j≤7,k

(f0,j,k + tf1,j,k)x
jyk.

Also S/I = k[t]/t2 so we may choose the lifting σ : S/I → S which maps a+ bt+ I
to a+bt for any a, b ∈ k. Then we know I is Γ-expandable by the unique expression
of f . However, I2/I3 is minimally generated by x2, xy, y2 with a nontrivial relation
ty2 = 0, so it is not free over S/I, so I is not strongly Lech-independent. �

Example 3.28. Let S = k[[x, y, t]]/(t2, ty − x2), I = (x, y), P = k[T1, T2], and
Γ = Mon(P )\Mon((T 2

1 )). By the same token above I is Γ-expandable, I/I2 is
minimally generated by x, y with ty = 0, so it is not free over S/I, so I is not
Lech-independent. So being Γ-expandable does not imply Lech-independence.

There is a special implication; being strongly independent implies being Ratliff-
Rush.

Definition 3.29. Let S be a local ring, I an ideal of S. Then Ĩ = ∪iI
i+1 : Ii is

called the Ratliff-Rush closure of I. We say that I is Ratliff-Rush if its Ratliff-Rush
closure is itself.

Now the following proposition is trivial.

Proposition 3.30. I is Ratliff-Rush if and only if AnnS/I(I
i/Ii+1) = 0 for any i.

In particular, strongly independence implies being Ratliff-Rush.

Remark 3.31. The converse of Proposition 3.30 does not hold. For example, Con-
sider S = k[[t1, t2, x, y]]/(t

2
1, t

2
2, t1t2, t1x

2 − t2y
2) and I = (x, y). Then I is Lech-

independent. S/I,I/I2 is free over S/I. For i ≥ 2,

Ii/Ii+1 =
∑

(S/I)xjyi−j/
∑

k · t1xj − t2x
j−2y2.

The set xjyi−j is a minimal generating set, but not a basis, so Ii/Ii+1 is not
free, so I is not strongly Lech-independent. We claim that I is Ratliff-Rush. It
suffices to prove AnnS/I(x

i + Ii+1) = 0. Suppose this is not true, then there

exist a, b, c ∈ k not all 0 such that (a + bt1 + ct2)x
i = 0 in Ii/Ii+1. Equivalently,

there exist aj ∈ k such that (a + bt1 + ct2)x
i +

∑
aj(t1x

j − t2x
j−2y2) = 0 in

k[[t1, t2, x, y]]/(t
2
1, t

2
2, t1t2). But the elements {t1xj − t2x

j−2y2, xi, t1x
i, t2x

i} are k-
linearly independent in k[[t1, t2, x, y]]/(t

2
1, t

2
2, t1t2), thus a = b = c = 0, which is a

contradiction.

4. Strongly Lech-independence and inequalities on multiplicities of

ideals

Throughout this section, we keep the same assumptions as the last section. We
also assume that (S, n) is a complete local ring with a coefficient field k unless
otherwise stated. We begin with a lemma which is a reformulation of the expansion
property.

Lemma 4.1. Let Γ be a standard set, I be an ideal in S which is n-primary and
Γ-expandable. Take f1, f2, ..., fl ∈ S such that their images in S/I form a k-basis
of S/I, and define a k-linear map σ : S/I → S which maps fi + I to fi. Then σ
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is a lifting, and expanding f as a linear combination of fi · u(x) gives a k-linear
isomorphism

S ∼=
∏

1≤i≤l,u∈Γ

k · fiu(x).

Proof. Since σ is k-linear, σ(0) = 0. Every element in S/I is of the form
∑

1≤i≤l aifi+

I for a1, ..., al ∈ k. Let π : S → S/I be the projection, then πσ(
∑

1≤i≤l aifi +

I) = π(
∑

1≤i≤l aifi) =
∑

1≤i≤l aifi + I. So σ is a lifting. For every f ∈ S,

f =
∑

u fuu(x). We write fu =
∑

i ci,ufi modulo I for ci,u ∈ k. But σ is k-linear,
so

∑
i ci,ufi ∈ σ(S/I), so fu =

∑
i ci,ufi in S. So f =

∑
u fuu(x) =

∑
i.u ci,ufiu(x).

This defines the map, and it is well-defined by the uniqueness of the expansion. The
map is surjective since the preimage of an expansion is just the value of the sum,
and it exists when S is complete. It is injective because if two elements give the
same expansion then they are both equal to the sum, hence they must be equal.
It suffices to prove linearity. Since fi + I is a k-basis of the k-vector space S/I,
we can define σ :

∑
i ci(fi + I) → ∑

i cifi, ci ∈ k. Then σ is a well-defined k-
linear map which lifts the identity. Now suppose f =

∑
u fuu(x), g =

∑
u guu(x),

c ∈ k. Then f + cg =
∑

u(fu + cgu)u(x). By the assumption on the expansion
fu = σ(fu + I), gu = σ(gu + I), so fu + cgu = σ(fu + cgu + I). So fu + cgu is in
σ(S/I). So f + cg =

∑
u(fu + cgu)u(x) is the unique expansion of f + cg. This

proves the lemma. �

Corollary 4.2. With the same notation as in Lemma 4.1, let t be a positive integer.
Set

A1,t = {fiu(x)|1 ≤ i ≤ l, u ∈ Γ, fiu(x) /∈ n
t},

and

A2,t = {fiu(x)|1 ≤ i ≤ l, u ∈ Γ, ord(fi) +
∑

ord(xj) degTj
(u) < t}.

Then we have:
(1) S/nt can be spanned over k by A1,t.
(2) A1,t ⊂ A2,t. So S/nt can be spanned by A2,t.
(3) If the set A2,t is linearly independent modulo n

t, then its image form a basis of
S/nt. So dimk S/n

t = |A2,t|.
Proof. Every element in S/nt has the form f + n

t, and we can represent f as
f =

∑
1≤i≤l,u∈Γ ci,ufiu(x) by the unique expansion property. Since I 6= S, It ⊂ n

t.

So u ∈ Γj , j ≥ t implies u(x) ∈ It ⊂ n
t. So f =

∑
1≤i≤l,u∈Γj ,j<t ci,ufiu(x) in

S/nt and this is a finite linear combination. So f + n
t is in the span of all the

fiu(x), so it’s in the span of fiu(x) such that fiu(x) /∈ n
t because fiu(x) ∈ n

t

means that fiu(x) = 0 in S/nt. This proves (1). For the second claim, note
that if fiu(x) /∈ A2,t, then ord(fi) +

∑
j ord(xj) degTj

(u) ≥ t, so ord(fiu(x)) ≥ t,

fiu(x) ∈ n
t, and fiu(x) /∈ A1,t. This proves (2). (3) is obvious by (2). �

Recall that the Hilbert series of S is HSS(z) =
∑

i≥0 dimk(n
i/ni+1)zi. Define

a partial order ≤ on R[[z]] to be degreewise comparison, that is,
∑

i≥0 aiz
i ≤∑

i≥0 biz
i if ai ≤ bi for all i. We have an embedding R[z](a−z) →֒ R[[z]] for any

a 6= 0. That means if z = 0 is not a pole of a rational series a(z) then we can view
a(z) as an element in R[[z]], while at the same time a(z) is defined over C except
for finitely many poles of a(z), so we can take limits in C.
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Lemma 4.3. Let d be a positive integer, a(z) =
∑

i≥0 aiz
i be a rational series

satisfying the following properties:
(P1) a(z) only has poles at roots of unity;
(P2d) z = 1 is a pole of a(z) with order d;
(P3d) The orders of poles of a(z) except for 1 are less than d.

Then we have

(4.1) lim
z→1

∑

i≥0

aiz
i(1 − z)d = lim

k→∞

(d− 1)!

(d+ k − 1)!

∂ka(0)

∂zk
.

Proof. We can express a(z) using partial-fraction decomposition. To be precise, let
U be the set of poles of a(z), then there exist finitely many real numbers ei,ξ, 1 ≤
i ≤ d− 1, ξ ∈ U , a real number e0 6= 0, and a polynomial b(z) such that

(4.2) a(z) =
∑

1≤i≤d−1,ξ∈U

ei,ξ(ξ − z)i−d + e0(1− z)−d + b(z).

Let L be the map a(z) → limk→∞
(d−1)!

(d+k−1)!
∂ka(0)
∂zk . Then it is additive. We apply L

to each term in the right side of (4.2). If 1 ≤ i ≤ d− 1,

L((ξ − z)i−d) = lim
k→∞

(d− 1)!(d− i+ k − 1)!

(d− i− 1)!(d+ k − 1)!
(ξ − 0)i−d−k = 0

as (ξ − 0)i−d−k is bounded and (d−1)!(d−i+k−1)!
(d−i−1)!(d+k−1)! goes to 0,

L((1− z)−d) = lim
k→∞

(d− 1)!(d+ k − 1)!

(d− 1)!(d+ k − 1)!
(1 − 0)i−d−k = 1,

and L(b(z)) = 0 as b(z) is a polynomial. This means the right side of (4.1) is
L(a(z)) = e0. The left side is also e0, so they are equal. �

Lemma 4.4. Let
∑

i≥0 aiz
i,
∑

i≥0 biz
i be two rational series satisfying (P1), (P2d)

and (P3d+1). Assume
∑

i≥0

aiz
i/(1− z) ≤

∑

i≥0

biz
i/(1− z),

then

lim
z→1

∑

i≥0

aiz
i(1− z)d ≤ lim

z→1

∑

i≥0

biz
i(1− z)d.

Proof. Let
∑

i≥0 a
′
iz

i =
∑

i≥0 aiz
i/(1−z),

∑
i≥0 b

′
iz

i =
∑

i≥0 biz
i/(1−z). It suffices

to prove that

(4.3) lim
z→1

∑

i≥0

a′iz
i(1− z)d+1 ≤ lim

z→1

∑

i≥0

b′iz
i(1− z)d+1.

Now
∑

i≥0 a
′
iz

i is a rational series satisfying (P1), (P2d+1) and (P3d+1) , so by

Lemma 4.3 the limit on the left side of (4.3) is equal to limk→∞
d!

(d+k)!
∂ka′(0)
∂zk , and

similar for the right side. Now the partial order on the power series is preserved by
taking derivatives, multiplying a positive constant, and evaluate at 0. So

d!

(d+ k)!

∂ka′(0)

∂zk
≤ d!

(d+ k)!

∂kb′(0)

∂zk
,

and take the limit when k → ∞. �
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Theorem 4.5. Let I be an ideal in S which is n-primary, x1, ..., xr be a minimal
generating sequence of I such that the order of xi is ti and t1 ≤ t2 ≤ ... ≤ tr.
Denote d = dimS. Pick Γ such that x1, ..., xr is Γ-expandable. We choose fi such
that their images form a homogeneous k-basis of grn(S/I).
(1) Let c(z) =

∑
t≥0 ctz

t, where ct is the number of fiu(x) such that 1 ≤ i ≤ l, u ∈
Γ, ord(fi) +

∑
j ord(xj) degTj

(u) = t. Then

c(z) = HSS/I(z)HSΓ(z
t1 , zt2 , ..., ztr)

and c(z) satisfies (P1), (P2d), (P3d+1).
(2) We have

HSS(z)/(1− z) ≤ c(z)/(1− z).

If for any t, the set

A2,t = {fiu(x)|1 ≤ i ≤ l, u ∈ Γ, ord(fi) +
∑

j

ord(xj) degTj
(u) < t}

is k-linearly independent modulo n
t, then

HSS(z)/(1− z) = c(z)/(1− z).

(3) We have:

l(S/I)e(Γ)/trtr−1...tr−d+1 ≤ lim
z→1

c(z)(1− z)d ≤ l(S/I)e(Γ)/t1t2...td.

(4) There is an upper bound of the multiplicity of the maximal ideal:

e(n) ≤ e(Γ)l(S/I)/t1...td−1td.

If moreover the set

A2,t = {fiu(x)|1 ≤ i ≤ l, u ∈ Γ, ord(fi) +
∑

j

ord(xj) degTj
(u) < t}

is k-linearly independent modulo n
t for any t, then there is also a lower bound:

e(n) ≥ e(Γ)l(S/I)/trtr−1...tr−d+1.

Proof. (1) By definition,

c(z) =
∑

i,u

z
ord(fi)+

∑
j
ord(xj) degTj

(u)

=
∑

i

zord(fi)
∑

u∈Γ

z
∑

ord(xj) degTj
(u)

= HSS/I(z)
∑

u∈Γ

u(zt1 , zt2, ..., ztr)

= HSS/I(z)HSΓ(z
t1 , zt2 , ..., ztr).

Let (ui, Si) be a Stanley decomposition of Γ. Then HSΓ(z) =
∑

i
ui(z)

ΠTj∈Si
(1−zj)

.

So

(4.4) c(z) = HSS/I(z)
∑

i

ui(z
t1 , zt2 , ..., ztr)

ΠTj∈Si
(1− ztj )

.
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The right side of (4.4) has two factors. The first factor HSS/I(z) is a polynomial
with HSS/I(1) = l(S/I) ≥ 0, so it’s regular near z = 1. The other factor is a finite
sum, and we compute the order of each term in the sum. Note that

ui(z
t1 , zt2 , ..., ztr)

ΠTj∈Si
(1− ztj )

=
ui(z

t1 , zt2 , ..., ztr)

(ΠTj∈Si
(1 + z + ...+ ztj−1))(1 − z)|Si|

,

so the order at z = 1 of the i-th term is just |Si|, and the other poles are given by
tj-th roots of unity; every tj-th root of unity is a single pole of 1/(1+z+ ...+ztj−1),
so the order of the i-th term at the other poles is at most |Si|. So the order of the
sum at z = 1 is max|Si|, which is just d, and the order of the sum at the other
poles is at most d. This means that c(z) satisfies (P1), (P2d), (P3d+1).

(2) If the images of fi’s form a homogeneous k-basis of grn(S/I) then fi’s form
a k-basis of S/I. The (t − 1)-th coefficient of HSS(z)/(1 − z) is the sum of the
coefficients of 1, z, ..., zt−1 in HSS(z), which is l(S/nt). The (t− 1)-th coefficient of
c(z)/(1− z) is the sum of the coefficients of 1, z, ..., zt−1 in c(z), so it is the number
of fiu(x) such that ord(fi) +

∑
j ord(xj) degTj

(u) < t, which is |A2,t|. It is no less

than the length of S/nt by Corollary 4.2, and the equality holds if the assumption
of (2) holds. So HSS(z)/(1− z) ≤ c(z)/(1− z), and the equality holds if for any t,
A2,t is k-linearly independent modulo n

t.
(3) By the proof in (1),

lim
z→1

c(z)(1− z)d = lim
z→1

HSS/I(z)
∑

i

ui(z
t1 , zt2 , ..., ztr)

ΠTj∈Si
(1− ztj )

(1− t)d

= l(S/I) lim
z→1

∑

i

ui(1, 1, ..., 1)

ΠTj∈Si
(1 − ztj)

(1 − z)d

= l(S/I)
∑

i,|Si|=d

ui(1, 1, ..., 1)

ΠTj∈Si
tj

= l(S/I)
∑

i,|Si|=d

1

ΠTj∈Si
tj
.

Also e(Γ) =
∑

i,|Si|=d 1. By the choice of t1, ..., tr,

t1t2...td ≤ ΠTj∈Si
tj ≤ tr−d+1...tr−1tr

whenever |Si| = d. So

1/t1t2...td ≥ 1/ΠTj∈Si
tj ≥ 1/tr−d+1...tr−1tr.

Take the sum over i where |Si| = d and multiply by l(S/I), we get the conclusion.
(4) By Lemma 3.11 dimS = dimΓ = d, so e(n) = limz→1 HSS(z)(1 − z)d. In

(2) we get HSS(z)/(1− z) ≤ c(z)/(1− z). c(z)/(1− z) satisfies (P1), (P2d+1) and
(P3d+1) by (1); HSS(z)/(1− z) has a single pole at z = 1 of order d+ 1 so it also
satisfies (P1), (P2d+1) and (P3d+1). So we can apply Lemma 4.4 to get

lim
z→1

HSS(z)(1− z)d ≤ lim
z→1

c(z)(1− z)d ≤ l(S/I)e(Γ)/t1t2...td.

So the first claim is true. For the second part, we haveHSS(z)/(1−z) = c(z)/(1−z)
so

lim
z→1

HSS(z)(1− z)d = lim
z→1

c(z)(1− z)d ≥ e(Γ)l(S/I)/trtr−1...tr−d+1.

�
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The condition in Theorem 4.5(4) is quite strong and is false in general. However,
it can be satisfied in the standard graded case. The following lemma builds a
relation between the standard graded case, the local case and the complete local
case.

Proposition 4.6. Let (Sg, ng) be a standard graded ring over a field k, (SL, nL)
be the localization of (Sg, ng) at ng, and the completion of (SL, nL) is (S, n). Let
Ig be a homogeneous ideal in Sg, and let IL = IgSL, I = IgS. Choose a set of
homogeneous minimal generators y1, ..., ye of ng. Then:
(1) Sg = k[y1, . . . , ye]/Ig, SL = k[y1, . . . , ye](y1,...,ye)/IL, S = k[[y1, . . . , ye]]/I.

(2) We have embeddings of rings Sg
i1−֒→ SL

i2−֒→ S. More generally, for any Sg-ideal
J we have injections Sg/J →֒ SL/JSL →֒ S/JS.
(3) Either Ig, IL, I are all Artinian or none of them is Artinian.

(4) Assume that Ig, IL, I are all Artinian, then for any t, Itg/I
t+1
g

∼= ItL/I
t+1
L

∼=
It/It+1 where these isomorphisms are induced by i1 and i2.
(5) Assume that IL, I are both Artinian, then either IL, I are both strongly Lech-
independent or none of them is strongly Lech-independent. If they are strongly
Lech-independent and one of them is Γ-expandable from degree i to j for any i < j,
then both of them are Γ-expandable from degree i to j for any i < j.
(6) The notion ord(f) is well-defined for nonzero elements f in Sg, SL, S and the
different orders are compatible via i1 and i2.
(7) If Ig, IL, I are all Artinian then e(Ig) = e(IL) = e(I). In particular e(ng, Sg) =
e(SL) = e(S).

Proof. (1) is trivial. To prove (2) it suffices to prove that for any ideal J of
Sg, Sg/J →֒ S/JS. This is true because the map is faithfully flat, hence injec-
tive. We know the dimension of a standard graded ring over a field k is equal
to the dimension of its localization at the homogeneous maximal ideal, and the
dimension of a local ring is equal to the dimension of its completion. This im-
plies that dimSg/Ig = dimSL/IL = dimS/I, so either they are all 0 or they
are all nonzero, which implies (3). To prove (4), note that i1, i2 are both faith-
fully flat extensions. So ItL/I

t+1
L

∼= Itg/I
t+1
g ⊗Sg

SL
∼= Itg/I

t+1
g ⊗Sg/Ig SL/IL and

It/It+1 ∼= Itg/I
t+1
g ⊗Sg

S ∼= Itg/I
t+1
g ⊗Sg/Ig S/I. Since Ig, IL, I are all Artinian,

Sg/Ig ∼= SL/IL ∼= S/I. This proves (4). (4) implies (5) by the definition of
strongly Lech-independence and expansion property. For (6), it suffices to check
that It ∩ SL = ItL and ItL ∩ Sg = Itg. The first equality is true because i2 is faith-

fully flat. For the second equality, pick f ∈ ItL ∩ Sg, then there exist f ′ ∈ Sg\ng
such that ff ′ ∈ Itg. Then f ′ has a nonzero constant term f ′

0. Let the term of f
with lowest degree s be fs. Then the term of ff ′ with lowest degree is f ′

0fs which
has degree s, so s ≥ t, so f ∈ Itg, which completes the proof. For (7), we have
e(Ig) = e(IL) = e(I) by (4) and the second part of (7) can be proved by taking
Ig = ng. �

Theorem 4.7. Let (S, n) be the localization of a standard graded ring (Sg, ng) over
a field k. Let I be an n-primary Lech-independent S-ideal which is extended from
a homogeneous ideal Ig with homogeneous minimal generators x1, ..., xr such that
xi is homogeneous in Sg of degree ti and t1 ≤ t2 ≤ ... ≤ tr. Assume that there is
a standard set Γ such that x1, ..., xr is Γ-expandable. Then e(S) ≥ e(Γ)t1...tr−d.



20 CHENG MENG

In particular, if there is a flat local map (R,m) → (S, n) such that I = mS then
e(S) ≥ e(R)t1...tr−d.

Proof. By Proposition 4.6 we may always complete S to assume that S is the
completion of Sg with respect to ng, and everything in the assumptions and con-
clusions are not affected. Moreover in S we have ord(xi) = ti. Since I is homo-
geneous, we may choose a k-basis fi of S/I such that each fi is homogeneous in
Sg; here we view Sg as a subring of S. Also the homogeneous minimal genera-
tors x1, ..., xr are in Sg. Now let

∑
ci,ufiu(x) be a sum satisfying ci,u ∈ k, u ∈ Γ,

where ci’s are not all 0, and ord(fi) +
∑

j ord(xj) degTj
(u) < t for any ci,u 6= 0.

Then the sum is nonzero by unique expansion property. Also, each term is in
Sg and we can view the sum as an element in Sg; now each term has nonzero
components only in degree smaller than t. So the sum has nonzero components
in degree smaller than t, and in particular, it does not lie in n

t
g, so it does not

lie in n
t because n

t ∩ Sg = n
t
g. So {fiu(x), ord(fi) +

∑
j ord(xj) degTj

(u) < t}
is k-linearly independent modulo n

t. Since this is true for any t, Theorem 4.5(4)
implies that e(n) ≥ e(Γ)l(S/I)/trtr−1...tr−d+1. Now assume there is a flat local
map (R,m) → (S, n) such that I = mS. Note that m is strongly Lech-independent,
so I is strongly Lech-independent, so it is Lech-independent, so by Hanes’ result
in [4], l(S/I) ≥ t1t2...tr. So e(n) ≥ e(Γ)t1t2...tr/trtr−1...tr−d+1 = e(Γ)t1t2...tr−d.
Also m is Γ′-expandable for some Γ′, so I is also Γ′-expandable. This implies
e(R) = e(Γ′) = e(Γ) by Proposition 3.11. So e(n) ≥ e(R)t1t2...tr−d. �

Remark 4.8. Theorem 4.7 is a generalization of some of Hane’s results, for example,
Corollary 3.2 of [4]. We make no assumptions on the minimal reduction of m or
mS. For example, consider R = k[[x, y2]]/xy2 → S = k[[x, y]]/xy2. Then neither
x or y2 can be a minimal reduction of m. The minimal reduction consists of one
element which is a linear combination of x and y2 which is not homogeneous. So
we cannot use Hane’s result, but we can apply Theorem 4.7 to prove e(R) ≤ e(S).

We can strengthen the first inequality in Theorem 4.5 (4) using the asymptotic
Samuel function.

Definition 4.9. The asymptotic Samuel function is v̄ : S → R ∪ {∞} such that
v̄(x) = limn→∞ ord(xn)/n.

Proposition 4.10. Let S be a local ring.
(1) v̄ is well-defined, that is, the limit exists for any x ∈ S.
(2) v̄ has values in Q ∪ {∞}.
(3) v̄(x) ≥ ord(x).

Proof. For (1) (2) see Chapter 6 and 10 of [7]. (3) is true as ord(xn) ≥ n·ord(x). �

Proposition 4.11. Let I be an ideal in S which is n-primary. Assume I =
(x1, ..., xr) and the sequence x1, ..., xr is Γ-expandable with dim(Γ)=d > 0. Denote
v̄(xi) = si and assume that s1 ≤ s2 ≤ ... ≤ sr. Then e(n) ≤ e(Γ)l(S/I)/s1...sd−1sd
and sd < ∞.

Proof. Choose any positive rational number qi < si. Choose a positive integer C
such that Cqi is an integer for any i. Take f1, f2, . . . , fl such that their images form
a k-basis of S/I. By definition of si = v̄(xi), there exist a constantDi in Z such that
ord(xn

i ) ≥ nqi+Di. So if u = T a1

1 T a2

2 ...T ar
r , ord(u(x)) ≥ q1a1+q2a2+ ...+qrar+D,

where D = D1+D2+ ...+Dr. Let Z = z1/C and view R[[z]] as a subring of R[[Z]].
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Let b(z) =
∑

t≥0,t∈Q btz
t where bt is the number of fiu(x) such that

∑
j qj degTj

(u) =

t then similar as Theorem 4.5 (1) we can prove b(z) = l(S/I)HSΓ(z
q1 , zq2 , ..., zqr).

The exponents of terms in b(t) is in 1/CZ, so we can view

b(z) = b(ZC) = l(S/I)HSΓ(Z
Cq1 , ZCq2 , ..., ZCqr)

as an element of R[[Z]].
Assume t ∈ 1/CZ. Let A3,t be the set {fiu(x)|1 ≤ i ≤ l, u ∈ Γ,

∑
j qj degTj

(u) <

t}. Note that A3,t ⊂ A3,t+1/C and

A3,t+1/C\A3,t = {fiu(x)|1 ≤ i ≤ l, u ∈ Γ,
∑

j

qj degTj
(u) = t}

because C
∑

j qj degTj
(u) is always an integer. This implies |A3,t+1/C |−|A3,t| = bt.

Consider the series

b′(z) =
∑

t≥0,t∈1/CZ

|A3,t|zt =
∑

t≥0,t∈Z

|A3,t|ZCt.

Then b′(z) = b(z)(1 − z1/C) or equivalently, b′(ZC) = b(ZC)(1 − Z). The Hilbert
series of S is

HSS(z) =
∑

i

dimk(n
i/ni+1)zi = HSS(Z

C) =
∑

i

dimk(n
i/ni+1)ZCi.

Let a(Z) =
∑

i aiZ
i = HSS(Z

C)(1−Z). Then ai = dimk(S/n
⌊i/C⌋+1) where ⌊·⌋ is

the floor function.
Suppose t ∈ Z. Since ord(fiu(x)) ≥ qj degTj

(u) + D,
∑

j qj degTj
(u) ≥ t

implies fiu(x) ∈ n
t+D, so S/nt+D can be spanned by A3,t. This means that

dimk(S/n
t+D) ≤ |A3,t|. So if t is an integer

aCt+CD−C = dimk(S/n
t+D) ≤ |A3,t|.

As |A3,t| is increasing in terms of t and ai only depends on ⌊i/C⌋,
aCt+CD−C = aC⌊t⌋+CD−C ≤ |A3,⌊t⌋| ≤ |A3,t|

for any t ∈ 1/CZ, or equivalently, at+CD−C ≤ |A3,t/C | for any t ∈ Z. This means
that ∑

t≥0,t∈Z

at+CD−CZ
t ≤

∑

t≥0,t∈Z

|A3,t/C |Zt.

So

(4.5) ZC−CDHSS(Z
C)/(1− Z) + P (Z) ≤ b(ZC)/(1− Z)

where P (z) is the term of ZC−CDHSS(Z
C)/(1 − Z) with negative exponents; in

particular P (z) is a Laurent polynomial in z. On the left side of (4.5), HSS(z)
has a single pole at z = 1 of order d; so HSS(Z

C) has a pole at z = ξ of order
d for every C-th root of unity where we view Z as the variable. This implies
that ZC−CDHSS(Z

C)/(1 − Z) + P (Z) has a pole at Z = 1 of order d + 1 and
a pole at Z = ξ of order d for every C-th root of unity ξ 6= 1. This means that
ZC−CDHSS(Z

C)/(1 − Z) + P (Z) satisfies (P1), (P2d+1), and (P3d+1). On the
right side of (4.5), we have

b(ZC)/(1− Z) = l(S/I)HSΓ(Z
Cq1 , ZCq2 , ..., ZCqr)/(1− Z)
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and by the same proof in Theorem 4.5 (3) we know b(ZC)/(1 − Z) also satisfies
(P1), (P2d+1), and (P3d+1). Now apply Lemma 4.4, we get

(4.6) lim
Z→1

(ZC−CDHSS(Z
C)/(1− Z) + P (Z))(1− Z)d+1 ≤ lim

Z→1
b(ZC)(1 − Z)d.

The left side of (4.6) is equal to

lim
z→1

(z1−DHSS(z)/(1− z1/C) + P (z1/C))(1 − z1/C)d+1

= lim
z→1

HSS(z)(1− z1/C)d = 1/Cd · lim
z→1

HSS(z)/(1− z)d = 1/Cde(n).

The right side of (4.6) is equal to

l(S/I)
∑

i,|Si|=d

1

ΠTj∈Si
Cqj

= l(S/I)/Cd ·
∑

i,|Si|=d

1

ΠTj∈Si
qj

which is smaller than 1/Cd · e(Γ)l(S/I)/q1...qd−1qd by a similar proof in Theorem
4.5 (3) and (4). So multiplying (4.6) by Cd we get e(n) ≤ e(Γ)l(S/I)/q1...qd−1qd.
Let qi goes to si we get e(n) ≤ e(Γ)l(S/I)/s1...sd−1sd. But e(n) > 0, so sd < ∞. �

By proposition 4.10 (3) si = v̄(xi) ≥ ti = ord(xi), so Proposition 4.11 is stronger
than Theorem 4.5 (4).
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